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Abstract—With the fast penetration of commercial Virtual Reality (VR) and Augmented Reality (AR) systems into our daily life, the

security issues of those devices have attracted significant interests from both academia and industry. Modern VR/AR systems typically

use head-mounted devices (i.e., headsets) to interact with users, and often store private user data, e.g., social network accounts, online

transactions or even payment information. This poses significant security threats, since in practice the headset can be potentially

obtained and accessed by unauthenticated parties, e.g., identity thieves, and thus cause catastrophic breach. In this paper, we propose

a novel GaitLock system, which can reliably authenticate users using their gait signatures. Our system doesn’t require extra hardware,

e.g., fingerprint sensors or retina scanners, but only uses the on-board inertial measurement units (IMUs) equipped in almost all

mainstream VR/AR headsets to authenticate the legitimate users from intruders, by simply asking them to walk a few steps. To achieve

that, we propose a new gait recognition model Dynamic-SRC, which combines the strength of Dynamic Time Warping (DTW) and

Sparse Representation Classifier (SRC), to extract unique gait patterns from the inertial signals during walking. We implement

GaitLock on Google Glass (a typical AR headset), and extensive experiments show that GaitLock outperforms the state-of-the-art

systems significantly in recognition accuracy (> 98 percent success in 5 steps), and is able to run in-situ on the resource-constrained

VR/AR headsets without incurring high energy cost.

Index Terms—Gait recognition, VR/ AR, sparse representation classification, dynamic time warping

Ç

1 INTRODUCTION

VIRTUAL Reality (VR) and Augmented Reality (AR) plat-
forms are booming after recent release of high profile

devices, such as HTC Vive, PlayStation VR, Samsung Gear
VR, Google Glass, Vuxiz Glasses, and Microsoft HoloLens
etc. The race between major industrial players is fierce due
to the high profit expectation in the future: according to
Goldman Sachs [18], VR/AR devices are predicted to pro-
duce over 180 billion dollars (110 billion in hardware and 72
billion in software) in revenue by 2025. Most of the current
VR/AR systems uses headsets (head-mounted display
equipped with sensors) to interact with users, which have
introduced tremendous new applications and services,
including home entertainment, cognitive assistance, health-
care, etc. [2], [23], [27], [32], [50].

However, the rise of VR/AR systems also brings sub-
stantial risks in security and privacy. Typically the VR/AR
headsets are linked to many private online accounts, such
as social networks, emails and payment, while the devices
may also record our daily routings, activities, and health
data. Such information is of significant value, and it is likely
to be targeted by malicious parties in the future. To make
things worse, in many cases the VR/AR headsets can be
easily accessed by other people, e.g., they can be shared
among different users, or snapped by thieves just like
smartphones, where in those cases the sensitive and private
user data is like low-hanging fruits to the potential attack-
ers. The lesson from Internet is that ignoring security at the
outset leads to huge pain when the technology becomes
ubiquitous. Therefore, in this paper we argue that the
authentication of users of VR/AR devices is a fundamental
building block for security, since once the users are authen-
ticated, we can rely on standard methods (e.g., secure com-
munication channel establishment) to achieve the integrity
and confidentiality of information on VR/AR platforms.

Unfortunately, existing authentication approaches used
on desktop or mobile devices are not suitable in the context
of VR/AR, since they either require bespoke hardware (e.g.,
fingerprint sensor is widely adopted as user-friendly and
robust authentication mechanism on smartphones and ret-
ina scanner is available on few state-of-the-art devices such
as Samsung Galaxy Note 7, Microsoft 950 XL, Fujitsu NX
F-04G, etc., however, neither of these two sensors can be
seen on any popularly accepted commercialised VR/ AR
devices such as HTC Vive, Sony VR, Microsoft Hololense
and Google Glass), or are not friendly enough for the users
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to input (e.g., PIN or passwords) on headsets or cannot be
used in natural way due to its special design and use case
(e.g., you may have to stand in front of a mirror to apply
face recognition). In this paper, we consider the on-board
inertial measurement units (IMUs), which have been
equipped on most of the VR/AR headsets for head tracking,
to authenticate the users seamlessly by checking their gait
signatures when walking. This also has many advantages
over the existing IMU based gait authentication systems,
e.g., they typically need to attach sensors to the wrist [9],
shoes [3] or hips [14] of the user, or require the users to
make predefined gestures to authenticate, which is prune to
imitation attacks [30]. On the other hand, authenticating
users using only headsets during normal walking is also
very challenging. First, the raw gait features measured on
head-mounted devices suffer from gait power attenuation
and irregular noises caused by involuntary head motion
when transmitted through the body, and thus are not accu-
rate enough for authentication directly. Second, in most
cases to better protect the VR/AR systems, instead of off-
loading the authentication task to the cloud, we require in-
situ processing, i.e., the sensing and computation involved in
the entire authentication process have to be completed on
the resource-constrained headsets. Therefore, the gait
authentication algorithm has to be extremely lightweight to
not jeopardize the normal user experiences of the devices
(e.g., latency and battery life).

To address these challenges, this paper proposes a new
GaitLock system to make high accurate users authentication
on resource-constrained VR/AR headsets practical. The
proposed system only requires the user to walk normally
for few steps (2-5 depends on the users setting), and is then
able to authenticate her successfully. The system is based on
a novel IMU-based gait authentication model Dynamic-SRC,
which uses Dynamic Time Warping (DTW) on top of Sparse
Representation Classifiers (SRC) to achieve accurate and
efficient gait recognition. Concretely, the technical contribu-
tions of our paper are:

� We propose GaitLock, a practical user authentication
system for VR/AR headsets, which only leverages
the widely available on-board IMU sensors to detect
intruders, to prevent outlier attacks, and recognize
different legitimate users to further support person-
alization service.

� We propose a new gait recognition model Dynamic-
SRC to improve the recognition accuracy of Gait-
Lock. We show that on multiple datasets GaitLock
with Dynamic-SRC is up to 20 percent more accurate
than existing approaches when recognizing 20 differ-
ent users, and can also achieve reliable authentica-
tion under mimicking attacks (Equal Error Rate
(EER) is 2.9 percent).

� We show that by using columns reduction and opti-
mized projections techniques, GaitLock is able to run
in-situ on resource-constrained VR/AR headsets.
Our evaluation on Google Glass confirms that Gait-
Lock has minimal impact on the energy cost and is
able to provide real-time response.

The rest of the paper is organized as follows. We review
related work in Section 2, then discuss the application

scenarios and threat model we focus on in Section 3, and
overview GaitLock in Section 4. The performance of Gait-
Lock is evaluated on collected datasets in Section 5. In
Section 6, we implement GaitLock on Google Glass to evalu-
ate its resources consumption on AR headsets. At last, Sec-
tion 7 concludes the whole paper.

2 RELATED WORK

2.1 Authentication Systems

Gait recognition was first studied in computer vision com-
munity. Vision-based approaches [4], [43] detect and sub-
tract the silhouette of the subject from video recording. Then
the scale invariant features [20], [41] of the walking subjects
are extracted. At last, different classificationmethods such as
Hidden Markov Model (HMM) [8] are applied to recognize
the subject. However, the problem of vision-based gait recog-
nitionmay be privacy-intrusive because of the image inputs.

The wearable devices are equipped with different sorts
of sensors and these sensors can be used to recognize the
wearers. These sensors can be bespoke: the authors in [9]
studied the bioimpedance information measured from the
waist of the subjects via a wearable sensor to continuously
recognize the subject wearing it. However, common VR/
AR headsets do not feature a bioimpedance sensor. On the
contrary, the IMUs are widely embedded in most of
mobile/wearable devices and can be used to detect different
wearers. For example, Li et al. [25] proposed to use IMUs to
monitor the unique head motion to authenticate the wearers
when they were listening to a stimulating piece of music.

Gait analysis based on IMUs is popular for authenticat-
ing the users of mobile devices, such as authenticating
smartphones users [17], [26]. The IMUs attached on smart
shoes [3] or hips [10], [14] were also studied to detect the
walking pattern of the subject. However the study of gait
analysis on head-mounted devices still remains unexplored.
Therefore, the above recognition or authentication solutions
are not suitable for wearable head-mounted devices.

There also have been many studies on authentication sys-
tems using other approaches in the literature [15], [19], [24],
[42] which are based on the touching activities on the screen
of smartphones. Pan et al. [31] proposed a system that sensed
the floor vibration induced by the steps of people to achieve
non-intrusive recognition however it required infrastructure
deployment. Tian et al. [40] proposed Kinwrite, an authenti-
cation system utilizing Kinect to acquire the customized 3D
handwriting to distinguish different users. However these
approaches are not applicable on head-mounted devices.

2.2 Head-Mounted Devices

The research on head-mounted devices is becoming popu-
lar. For example [50] proposed a new system iGaze to pro-
vide a novel networking mechanism for smart glasses. It
understood the interest of connection from the users and
connected to a target by a simple gaze. While in [32], the
authors studied the problem of tracking the browsing of the
users in retail stores to extract key elements in the physical
browsing and infer the layout of the stores. The authors
in [16] designed Gabriel on Google Glass which provided
cognitive services to help users to recognize faces and
objects and in [49] and [48] the authors further improved
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the performance of cognitive assistance by fusing multi-
modal sensors. However the authentication systems on
head-mounted devices remain vastly unexplored.

2.3 Compressive Sensing

Compressive sensing has been popularly used to reduce the
resource consumption of the applications on resource con-
strained systems such as low cost sensors system [21], [28],
[47], embedded systems [22], [36], [37], [45] and smart-
phones [38], [39]. In [47] the authors studied the problem of
moisture sensing. The use of random projections and projec-
tion matrix optimization were discussed in [36], [38] to
reduce the amount of computation in resource constrained
systems. The idea of using multiple observations to improve
the performance of sparse representation was also investi-
gated in [29], [44] for activities recognition with radio fre-
quencies interference and GPS acquisition.

3 APPLICATION SCENARIOS AND THREAT MODEL

3.1 Multiple Users Authentication and
Personalization

Suppose a VR or AR headset is shared by family members
for home entertainment or a group of doctors for medical
diagnosis assistance. GaitLock is installed in the system to
enable the device authenticating the users and personaliz-
ing the system accordingly. Specifically, when someone
picks up the device, an authentication event will be trig-
gered. Then the screen of the device pops out a message:
Please walk to Authenticate. Then the unknown subject walks
for some steps and the device will determine if he/she is
one of the authorized users according to the results from
GaitLock. If the subject is recognized as one of the users, the
system is unlocked and personalized automatically; other-
wise, the access attempt is rejected and another round of
authentication process is triggered. When consecutive and
multiple authentication attempts fail, the system will be
locked in case the adversaries get authenticated occasionally
with exhaustive trails. If, though unlikely, the real owner
keeps failing for authentication, the system can switch to a
cumbersome authentication mechanism, e.g., requests for a
preset QR-code to be scanned by the embedded camera of
the device to get authenticated.

The proposed authentication system, GaitLock, provides
crucial privacy protection service. For examples, as a home
entertaining device, it will log on the corresponding social
network accounts (Facebook/Twitter) and/or online pay-
ment accounts (Paypal/Alipay) when an authorized user is
recognized. The information contained in these accounts is
quite sensitive and should not be accessed by an intruder or
shared with other family members. As a medical diagnosis
assistance device, a VR/AR headset may be shared by multi-
ple doctors and it stores and maintains the patient cases for
each doctor. Again, these cases should not be leaked to an out-
lier attacker or accessed by other doctors. Therefore, a proper
authentication system should be able to both detect the sys-
tem intruders and distinguish different authorized users.

3.2 Threat Model

The threat model in this paper focuses on two types of
adversaries which are, according to the discussion in appli-
cation scenarios, outlier attackers and inner attackers.

Outlier Attackers are the subjects who occasionally obtain
the VR/AR headset and are curious about the private infor-
mation stored inside without the permission from any of
the authorized users. These adversaries can be other col-
leagues in the same hospital of the users, after-hours clean-
ing staffs or some unknown individuals picking up the lost
glasses or thieves snapping it deliberately. Inner Attackers
are the authorized users of the device who are curious about
the information of other users. It is easy for inner attackers
to physically obtain the device and conduct attacks.

The “Lunchtime attack” is one of the typical attack exam-
ples [13] consistent with this threat model where the adver-
saries (i.e., colleagues) temporarily obtain the device while
the owner is out for lunch. This threat model is typically
adopted in authentication systems on mobile devices such
as face authentication on smartphones [38], movement pat-
tern authentication on smart glasses [25] and bioimpedance
authentication on wrist-worn devices [9] etc. The attackers
may perform two sorts of attacks, i.e.,Mimicking Attacks and
Zero-effort Attacks. It is possible the attacker is familiar with
the walking pattern of the owner or records it beforehand
(especially for the inner attackers) so that the attackers can
try to mimic the gaits of the owner to get access to the pri-
vate information stored in the devices. While in zero-effort
attacks, the attackers walk for some steps in arbitrary way.

4 SYSTEM DESIGN

In this section, we will provide an overview of the proposed
users authentication system, GaitLock on VR/AR headsets.
The overall architecture of the system is presented in Fig. 2
and the corresponding sections and details are also labelled
for the ease of the readers. The system consists of three
main components: 1) offline dictionary building and projec-
tion matrix learning, 2) online step cycles extraction and 3)
online users authentications.

To make life easier, we first list all the notations used in
the proposed algorithm in Table 1.

4.1 Step Detection and Interpolation

The step cycles are separated by applying a simple step
detection algorithm on the sensor data from accelerometer
by finding the local maximums of the step power. However
the raw sensor data is corrupted by high frequency noises
and irregular head motions as shown in Fig. 3. To reduce
the high frequency noises and eliminate the effect of irregu-
lar head motions, a bandpass butterworth filter [6] is
designed according to the frequency range of walking steps,
i.e., the filter order is 4 and passing frequency range is
0.8 Hz to 2 Hz. We choose this very narrow passing band-
width to make the peak detection easier. Then the local
maximums are found to separate the long sequence into
step cycles as shown on the lower figure in Fig. 3.

After the step detection, the sensor data of IMUs is sepa-
rated into short segments of step cycles according to the
found maximums. It is noted that the filtered data is only
used for finding the segmentation points for the original
IMUs data and we feed the segmented original IMUs time
series data into gait recognition. After segmentation, we
find that most of the step cycles generated by a walking pat-
tern last between 0.4-1.0 s (20-50 samples). This result is in
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return used to exclude the cycles not produced by normal
walking, i.e., the extracted cycles that last less than 0.4 s or
over 1.0 s will not be considered.

SRC requires that the signals are of the same length, while
the length of the time-series signals varies even when they
are all from the normal walking mode. In [1], [5], to apply
SRC for activities recognition, zeros are padded at the end of
the time series signals until they are in themaximumpossible
length. However, padding zeros will affect the performance
of SRC based gait recognition significantly as the step cycles
are not well aligned. In this paper, we apply linear interpola-
tion to approximate the step cycles into the length of 50.

4.2 Dynamic-SRC Model

The accurate recognition of GaitLock is based on the new
gait recognition model, Dynamic-SRC. Dynamic-SRC takes

the sensors data from both accelerometer and gyroscope for
gait recognition. It is known that head motions deteriorate
IMU measurements. We observe that head motions are sig-
nificant and mostly occur in yaw direction when walking.
The evaluation discussed in Section 5.3 indicates that
including gyroscope data from yaw direction will deterio-
rate the recognition accuracy. To reduce the influence of the
head motions, we first exclude the gyroscope sensor data
from z axis (as shown in Fig. 1) of the gyroscope which cor-
responds to the motions in yaw direction of the head. Then
we apply the bandpass butterworth filter (order 4, passing
frequency range 0.8-2 Hz) on the sensor data obtained from
the rest of the sensors axes to filter out the infrequent head
motions occurring in other directions. Then, one step cycle
can be represented by a data matrix S ¼ fsigi¼1:F where
each column si is a vector of samples from one sensor axis
after interpolation and its length is l ¼ 50, and i is the index
of the chosen axes. F ¼ 5 as it includes all the three axes of
accelerometer and the two axes (x and z) of gyroscope.
Sv 2 RM is a vectorized format of S by concatenating the
vectors of samples from different axes. Therefore the length
of Sv will beM ¼ Fl (i.e., 250 in our setting).

4.2.1 Sparse Representation

To model the gait recognition as a sparse presentation prob-
lem, one needs to first build a dictionary D 2 RM�N from

TABLE 1
Notations Used the Proposed Algorithm

S data matrix of training step cycle Sv vectorized training step cycle
Y data matrix of testing step cycle Yv vectorized testing step cycle
M length of Sv or Yv l length of each column in S or Y
D training set M;N size of matrixD
P number of classes p index of classes
u sparse representation coefficients g DTW distance between time series
k sparsity of the solution u0 starting point of the solution u
gðuÞ object function of ‘1 optimization v1 subgradient of object function
sgnð�Þ sign function @u gradient of object function
Ci residual correlation at the ith iteration di step size of the ith iteration
I sparse support set � tune parameter in ‘1 optimization
b�
i , b

þ
i solutions at the ith iteration di step size of the ith iteration

h set of consecutive steps Q set of sparse representations of consecutive steps
wi weight allocated to the ith step cycle R optimized projection matrix
U , V unitary matrices from SVD

P
matrix of singular values

m number of rows of R n number of columns of R

Fig. 1. Left: Examples of AR/VR headsets in the market; right: IMUs and
its axes.

Fig. 2. Flowchart of GaitLock on VR/AR headsets.
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the training set. Suppose we have P different subjects in
the training set and each of the subject contributes a sub-
dictionaryDp. The sub-dictionaryDp contains multiple inter-
polated step cycles Sv from the pth subject. Then an M �N
dictionaryD from the training set is formed andN is the total
number of interpolated step cycles in the training set.

Let Y 2 Rl�F represent the interpolated data matrix of
step cycle extracted from the test phase with the same for-
mation of S and Yv 2 RM is the vectorized format. The
sparse representation of Yv under dictionary D can be
obtained by solving the following ‘1 optimization problem,

min
u

1

2
jjYv �Dujj22 þ �jjujj1; (1)

where u 2 RN is the sparse representation of the test step
cycle under dictionary D. The ‘1 norm in the object function
accounts for the sparseness of the representation while the
‘2 norm accounts for the recovery accuracy. One of the
assumptions behind ‘1 optimization is that the test step
cycle can be linearly represented by the dictionary D as
Yv ¼ Du.

However, the interpolated step cycles in dictionary D are
the approximation of the shape of original time-series sig-
nals and we cannot guarantee perfect alignment. The opti-
mization result of the objective function in Eq. (1) may lead
to non-optimal recognition accuracy. To deal with the prob-
lem of poor alignment, we introduce Dynamic Time Warping
Distance into ‘1 optimization to improve the recognition
accuracy.

4.2.2 Dynamic Time Warping Distance

Dynamic Time Warping distance is an alignment algorithm
developed for matching the time series signals and it is pop-
ularly used in speech recognition [35]. DTW distance is
applied to measure the similarity of the time series signals
with varying speed by warping the time axis iteratively
until the optimal non-linear mapping is found. Fig. 4 dem-
onstrates the non-linear mapping path of two time series
signals X ¼ fx1; x2; x3; . . . ; xNg and Y ¼ fy1; y2; y3; . . . ; yMg.
The indices of the X and Y are presented by the indices of
rows and columns in the grid. Each cell in the grid repre-
sents the measure of the difference between the correspond-
ing elements in X and Y . The grid cells with red dots
consist of the optimal warping path and the accumulated
square distance between the chosen pairs through the path

is used as the measure of the similarity between the two sig-
nals. In mathematics, the accumulated square distance and
warping path can be calculated by,

gði; jÞ ¼ dðxi; yjÞ þminfgði� 1; jÞ; gði; j� 1Þ; gði� 1; j� 1Þg; (2)

where gði; jÞ is the accumulated distance until cell fi; jg.
dðxi; yjÞ is the square difference of xi and yj. DTW finds the
warping path that minimizes the accumulated distance
betweenX and Y .

As discussed in [34], the computational complexity of
standard implementation of DTW is Oðn2Þ. However the
fast implementation of DTW will achieve the computational
complexity OðnÞ.

4.2.3 Incoporating DTW Distance in SRC

Considering the fact that DTW distance is a preferable mea-
sure of the distance between time-series signals, the new
constraint is added to guarantee the low DTW distance
between the test step cycle vector Yv and the estimation Du

in the ‘1 optimization problem.
‘1-Homotopy. We choose ‘1-Homotopy [12] to solve the

optimization problem because it is computationally efficient
and has been used in many SRC approaches success-
fully [38]. The computational complexity of ‘1-Homo-
topy [12] is Oðk3 þ kMNÞ, where k is the sparsity of the
solution, M is the number of measurements and N is the
dimension of the solution (k � N , M � N) which are equal
to the number of rows and columns in dictionary D respec-
tively. According to the discussion in [12], an interior-point
based method in general starts from a dense solution and
iteratively sparsifies the solution. Different from the general
purpose methods, a Homotopy-based solver starts from
u0 ¼ 0 and iteratively adds and removes non-zeros from the
active solution set. As the solution is supposed to be sparse,
the Homotopy-based solver is more favorable in terms of
efficiency.

Let the object function gðuÞ ¼ 1
2 jjYv �Dujj22 þ �jjujj1

(gðuÞ 2 RM ). The gradient of the object function gðuÞwill be,

@u ¼ �@jjujj1 �DT ðYv �DuÞ; (3)

where v ¼ @jjujj1 is the subgradient,

vi ¼
sgnðuðiÞÞ if uðiÞ 6¼ 0

½ � 1; 1� if uðiÞ ¼ 0;

�
(4)

where sgnð�Þ is the sign function and uðiÞ 2 R is the ith ele-
ment in u.

Fig. 3. The time series data and noise reduction.

Fig. 4. The matching path of the two time-series signals via dynamic time
warping.
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The Homotopy algorithm finds the optimal solution of u
that maintains the gradient of object function gðuÞ equal to
zero. Specifically, Homotopy starts from an initial solution
u0 ¼ 0 and iteratively computes the updated solution ui. Let
the residual correlation at the ith iteration denoted by Ci 2 R

and Ci ¼ DT ðYv �DuiÞ and the sparse support set as
I � Zþ. At the ith iteration, Homotopy finds the update
direction di 2 RN by solving,

DTDdi ¼ sgnðciðIÞÞ; (5)

where only the elements with indices in the current active
sparse support can be non-zeros. Then the current solution
at the ith iteration is computed by,

ui ¼ ui�1 þ bidi; (6)

where di 2 R is the step size to the next solution point which
has two different possible solutions

bi ¼ minfb�
i ;b

þ
i g; (7)

where,

b�
i ¼ min

j2I
f�uiðjÞ=diðjÞg; (8)

and,

bþ
i ¼ min

j2Ic
�� ciðjÞ

1�DT
j DdiðIÞ ;

�þ ciðjÞ
1þDT

j DdiðIÞ

( )
; (9)

where Ic 2 Zþ is the set of indices corresponding to the ele-
ments not in active support set I.

The support set I is then updated by either adding index
iþ (the index associate with bþ

i ) or removing index i� (the
index associate with b�

i ) according to the result of Eq. (7) .
DTW Distance as Termination Criterion. After the current

solution ui is obtained and the sparse support I is updated,
the termination condition will be checked. The key contribu-
tion of dynamic sparse representation is the new termina-
tion criterion. There are a few existing termination criteria
for quadratic optimization algorithms: such as 1) Relative
Change: the optimization stops when the relative change,
defined as ðui � ui�1Þ=ui, is lower than the threshold which
indicates a stable solution has been achieved; 2) Recovery
Errors: the optimization stops when the recovery error,
defined as jjðYv �DuiÞjj, is lower than the requirement
which indicates an accurate reconstruction is achieved; it is
adopted by our algorithm (see Eq (10)); 3)Max Iterations: the
optimization stops when the maximum number of

iterations are reached. It is often used with other termina-
tion criteria to avoid endless loop or for the efficiency con-
sideration. The choice of the termination criteria is
important and application-based. For example, as noises
extensively exist in real world signals, the signals are often
Compressible not Sparse in some transform domain. A signal
is compressible if its representation in some domain has
few dominant coefficients and the rest are close to zero. If
the optimization algorithm for sparse signals reconstruction
does not consider the termination criteria, the feasible solu-
tion will not be found as the algorithm intends to find a per-
fect reconstruction which cannot be achieved. Therefore,
the Recovery Errors or Relative Change with Max Iteration can
be chosen as the termination criterion for this case.

For the case of gait recognition, DTW distance is known
as a favorable measure of the similarity of the time-series
signals. Therefore, we exploit the distance structure of the
time-series signals based on DTW to propose a new termi-
nation criterion which is used to guarantee low DTW dis-
tance is achieved. The new optimization algorithm will stop
when

DTWðYv;DuiÞ < d; (10)

or the number of iterations is overMax Iteration.
The near-optimal solution can be guaranteed when d is

small enough. d is not subject or dataset dependent accord-
ing to our experience. It can be tuned according to the sen-
sor data from the step cycles of one subject while the
resultant tolerance is generally applicable for other subjects
and different datasets.

To demonstrate that DTW distance will decrease and
converge with the growth of number of iterations, we com-
pute the DTW distance between the test signal Yv and the
estimation Dui for each optimization iteration in ‘1-Homo-
topy based algorithm. Fig. 5 presents the results from over
3,000 test signals and each curve in the upper figure stands
for the results from one test signal. The lower figure shows
the cumulative probability of the number of iterations when
DTW distance converges. From the results we can see
almost all of the DTW distance from test signals converge
within 80 iterations. We set d ¼ 0:05 and Max Iterations as 80
for our system and only less than 0.5 percent of the optimi-
zations terminate due to exceeding Max Iterations. As the
evaluation results suggest in Section 5.4, the new algorithm
achieves significantly higher recognition accuracy than the
SRC with traditional termination criteria.

It is worth noting that DTW distance is generally applica-
ble for various ‘1 optimization algorithms. We choose the
‘1-Homotopy based algorithm due to computational effi-
ciency requirement of the system implementation.

4.3 Sparse Fusion

Considering the fact that gait information sensed by head-
mounted devices is deteriorated by the indirect measure-
ments and noisy inputs of onboard IMUs, the step cycles
can be misclassified. The evaluation results in Section 5 also
demonstrate that the recognition accuracy of the proposed
method with single step cycle is around 86 percent which
might not meet the requirement of the security related pur-
pose. To further improve the recognition accuracy, we pro-
pose Sparse Fusion which fuses the sparse coefficients

Fig. 5. The convergence of DTWdistance.
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vectors from multiple consecutive step cycles simulta-
neously to improve the recognition accuracy according to
the fact that they must be generated by the same subject. In
this paper, the steps are said to be consecutive before the
device is taken off.

Suppose h ¼ fYv1;Yv2; . . . ;YvZg � RN; whose columns
are the vectorized step cycles extracted from consecutive
steps. Q ¼ fû1; û2; . . . ; ûZg � RN are the corresponding
sparse coefficients vectors under dictionary D. As the step
cycles in h are known from the same subject, the sparse rep-
resentations tend to have non-zero coefficients at the same
class in dictionary Dwhile the noises are assumed to be ran-
domly located. Therefore, we propose to use sparse fusion
to combine the weighted sparse representations of the con-
secutive step cycles to improve the Signal to Noise Ratio
(SNR) of the classification model

ûC ¼ S
Z
i¼1viûi; (11)

where vi 2 R is an adaptive weight assigned to the sparse
representation of the ith step cycle in h determined by the
Sparsity Concentration Index (SCI) [46],

SCIðuiÞ ¼
P �maxPj¼1jjdjðûiÞjj1=jjûijj1 � 1

P � 1
; (12)

where djðûiÞ 2 RN denotes that all the coefficients in ûi are
set to zeros except those related to class j. It measures the
quality of the sparse representation. The adaptive weight vi

is calculated as,

vi ¼ SCIðûiÞ=SP
j¼1SCIðûjÞ: (13)

Then the analogous step cycle corresponding to ûC can be
represented as,

YC
v ¼ S

Z
i¼1viYvi: (14)

4.4 Intruders Detection and Multiple Users
Authentication

With the knowledge of YC
v , û

C and dictionary D, the final
classification decision can be determined by computing the
residuals of each class. Different from the method using
Euclidean distance in [46], we propose the DTW residual.

The definition of the DTW residual for class i is

riðYC
v Þ ¼ DTWðYC

v ;DdiðûCÞÞ; (15)

where diðûCÞ only contains the coefficients related to class i
in the weighted sparse representation vector; all the other
coefficients are set to be zeros.

Intruders detection. Intruders are determined by checking
the classification confidence. The classification confidence is
defined the same as in [38],

confidence ¼ 1

K

XK
j¼1

rjðYcÞ � min
j¼1;...;K

rjðYcÞ
 !

=
1

K

XK
j¼1

rjðYcÞ: (16)

The confidence is between 0 to 1. It is equal to 1 if the test
signal is perfectly represented by step cycles from only one
class in the dictionary; the confidence is equal to 0 if resid-
uals are evenly distributed in all classes.

Users Recognition. If the subject is regarded as one of the
users after checking the confidence, the user ID is deter-
mined by finding the class with the minimal DTW residual,

î ¼ argmin
i¼1;2;...;Z

riðYC
v Þ: (17)

The gait recognition method presented above is termed as
Dynamic (time warping)-SRC based on the two key theoret-
ical components.

4.5 Computational Complexity Reduction

Dynamic-SRC is too prohibitive for realtime authentication
on VR/AR headsets due to the high dimensionality of the
dictionary. We propose to apply optimized projections and
columns reduction to improve the efficiency of Dynamic-
SRC model while preserving its high recognition accuracy.
The fast version is termed as fast Dynamic-SRC.

4.5.1 Optimized Projections

Inspired by the recent advances in information theory of
Compressive Sensing (CS) [7], [11], random projection
matrices are used in the original SRC [46] to reduce the
dimensionality of the ‘1 optimization for sparse representa-
tion estimation. Although random projection matrices can
significantly reduce the computation time of SRC and are
easy to implement, they lead to large performance variance
with different projection matrices generated and are not
optimal at all. To address the problem of performance vari-
ance, optimized projection matrices are proposed [33], [38].
We apply a similar approach to [33] to produce a determin-
istic and optimal projection matrix to reduce the dimension-
ality of Dynamic-SRC while preserving the classification
accuracy. The projection matrix is learned from dictionary
D based on Singular Value Decomposition (SVD)

D ¼ USV T ; (18)

where U 2 RM�M and V 2 RN�N are unitary matrices and
S 2 RM�N a diagonal matrix whose diagonal elements are
nonnegative and in decreasing order. The optimized projec-
tion matrix R 2 Rm�M is formed by extracting the first m
rows of the transpose of the unitary matrix U , i.e., the rows
corresponding to the first m largest singular values in S.
The ‘1 optimization problem is updated by including the
projection matrix,

min
u

1

2
jjRYv �RDujj22 þ �jjujj1: (19)

As m � M the ‘1 optimization problem is projected into a
significantly lower dimensionality.

4.5.2 Columns Reduction

According to the formation of the computational complexity
of ‘1-Homotopy, i.e., Oðk3 þ kMNÞ, the computation of ‘1
optimization is also proportional to the number of columns
in the dictionary D. The step cycles in the same class are
highly correlated and lead to intra class redundancy. To
reduce the intra class redundancy in the dictionary while
preserving the most informative columns, we apply the
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columns reduction approach proposed in [45] to improve
the efficiency of Dynamic-SRC.

According to the evaluation in Sections 5.5 and 6, fast
Dynamic-SRC with both optimized projections and columns
reduction can preserve the high recognition accuracy while
being 25 times faster than Dynamic-SRCwith full dictionary.

5 EVALUATION ON DATASETS

5.1 Goals, Methodology and Evaluation Metrics

The goals of our evaluation are 1) to determine how to
reduce the impact of head motions, 2) to evaluate the recog-
nition accuracy of GaitLock and compare it with other state-
of-the-art gait recognition methods, 3) to determine the key
parameters of GaitLock with fast Dynamic-SRC including
the number of projections and number of remaining col-
umns of the dictionary after columns reduction and 4) to
evaluate the performance of GaitLock against attacks. To
distinguish different versions of GaitLock, we use Dynamic-SRC
or fast Dynamic-SRC to indicate GaitLock with the corresponding
models when evaluating the performance of gait recognition.

In this paper, we only use AR headset, i.e., Google Glass,
for the experiments and system implementation because the
current VR headsets are only designed for sensing and dis-
playing. However, we envision that, upcoming VR hard-
wares will be the next big computing platforms and their
computational capability should be significantly better than
Google Glass due to the contrast of the volumes. We conduct
both the indoor controlled and outdoor uncontrolled experiments
and IMUs sensors reading on Google Glass. The details about
the datasets collectionwill be discussed in Section 5.2.

Dynamic-SRC is compared with six different gait recogni-
tionmethods includingDynamic TimeWarpingwithNearest
Neighborhood (DTW+NN) [10], Time-Delay Embeddings
with Template Matching (TDE+TM) [14], Nearest Neighbor-
hood (NN) and three variances of SRC approaches including

SRC with zero padding, sparse fusion and majority voting
respectively. At last, we evaluate the performance ofGaitLock
against zero-effort andmimicking attacks.

As discussed in Section 3, a VR/AR device can be shared
bymultiple users (e.g., familymembers), GaitLock should be
able to both authenticate and differentiate different legiti-
mate users. We use Recognition Accuracy to evaluate the per-
formance of GaitLock on differentiating different legitimate
users (i.e., identification). Recognition accuracy is the per-
centage of the correct recognition tests over the total number
of recognition tests. The reported recognition accuracy pre-
sented in this section is generated from averaging the results
from 4-folds cross validation. The performance of GaitLock
on authenticating legitimate users is evaluated by multiple
metrics: False Rejection Rate (FRR), False Acceptance Rate (FAR)
and Equal Error Rate. FAR is the measure of probability that
the authentication system incorrectly accepts the access
request by an intruder. FAR is computed as the ratio of the
number of false acceptances over total number of access
attempts. FRR is ameasure of the probability that the authen-
tication system incorrectly rejects the access attempts from
real users. FRR is computed as the ratio of the number of
false rejections over the total number of access attempts.
There is a trade-off between FAR and FRR, i.e., a low FAR
may lead to a high FRR or vice versa. EER signifies an equal
trade-off between FRR and FAR, meaning that EER is the set
of all the points at which FAR ¼ FRR. In short, EER is equal
to FAR or FRRwhen FRR¼ FAR.

5.2 Indoor Dataset Collection

As no public dataset is available for gait analysis with VR/
AR headsets, we conduct both controlled indoor and uncon-
trolled outdoor experiments to collect the suitable datasets.1

We recruit participants by sending advertising emails
within Singapore-MIT Alliance for Research Technology
(SMART) and paid incentives to the volunteers. 20 subjects
are recruited to collect the datasets. Considering the appli-
cation scenario described in Section 3 in which the VR/AR
headset is shared by family members, where the number of
legitimate users is normally not over 5. Therefore, 20 sub-
jects are reasonable to evaluate our system. The recruited
group of people age from 20 to 45 and include 8 females
and 12 males. The height of people in the group is between
161 cm to 183 cm and the average is 172 cm. The BMI of the
people in the group vary from 16.6 kg=m2 to 27.7 kg=m2 and
the average is 22.3 kg=m2. To collect the dataset from indoor
environment, the subjects participate in two days experi-
ments and each day of experiment consists of two data col-
lecting sessions. The second day of experiment is one week
after the first day. During the data collecting sessions, the
subject was asked to wear the Google Glass while walking
along the specific route clockwise (or counterclockwise) as
shown in Fig. 6a. The data generated by the IMUs (acceler-
ometer and gyroscope) and its corresponding timestamps
are recorded. There are over 60 step cycles in each session.
The four sessions are labelled as: 1) clockwise walking in day
one, 2) counterclockwise walking in day one, 3) clockwise
walking in day two and 4) counterclockwise in day two.

Fig. 6. Indoor controlled and outdoor uncontrolled experiments
environments.

1. Ethical approval was granted by Massachusetts Institute of Tech-
nology (Reference Number 1502006877).
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During the evaluation, one session out of four is chosen alter-
natively as the training set and the rest three sessions as test
set. Therefore the training set has approximately over 1,200
steps and test set has over 3,600 steps for each round of
evaluation.

5.3 Impact of Head Motions

In Section 4.2, we claim that a butterworth bandpass filter
should be applied to reduce the impact of irregular head
motions and sensor data generated from the y-axis of gyro-
scope should be excluded as head motions in yaw direction
are frequent (e.g., turning, talking to the companion or look-
ing around). It is often corrupted significantly and cannot
be removed by simple bandpass filter. To verify our hypoth-
esis, we evaluate the performance gain achieved by includ-
ing the sensor data from each of the three axes of gyroscope.
The bandpass filter is applied on the time series data from
all axes. From evaluation we find that including the x and z
axes of the gyroscope improve the recognition accuracy
while the recognition accuracy decreases when including y
axis even though the filter has been applied. The gyroscope
reading from y axis corresponds to head turning in yaw
direction. Therefore, we use the sensor data from accelerom-
eter and x and z axes of gyroscope for the gait recognition.

5.4 Comparison with Other Gait Recognition
Methods

To satisfy the high recognition accuracy requirement of the
security related applications, Dynamic-SRC applies sparse
fusion on multiple step cycles to improve the recognition
accuracy. To determine whether Dynamic-SRC outperforms
the state-of-the-art methods, we also implement DTW+NN
[10], TDE+TM [14], Nearest Neighbourhood and the original
SRC with different fusion or interpolation choices. In the
legends shown in Fig. 7, the original SRC implementation
with sparse fusion is represented as SRC (SF). SRC (MV)
applies Majority Voting (MV) instead of sparse fusion. SRC
(Pad) follows the interpolation method used in gestures or
activities recognition in [1], [5] which pads zeros to stretch the
signals into the same length.

Fig. 7 presents the recognition accuracy of different
methods. The x axis is the number of step cycles used for
one recognition and y axis is the recognition accuracy. The
recognition accuracy is computed by averaging the results
over four rounds of experiments. During each experiment,
we choose one session as training set and the rest three

sessions as test set. From Fig. 7 we can see that Dynamic-
SRC achieves the highest recognition accuracy among the
methods implemented and it is 10 percent better than TDE-
TM and 20 percent better than DTW+NN at x ¼ 5. From the
comparison of Dynamic-SRC and SRC (SF), we can find
DTW distance improves the performance of SRC for the gait
recognition and the proposed approach is up to 10 percent
better than original SRC at x ¼ 1. SRC (SF) applies sparse
fusion to determine the final recognition decision while
SRC (MV) uses majority voting. As the results suggest,
sparse fusion improves the recognition accuracy by up to 6
percent at x ¼ 3. SRC (SF) and SRC (Pad) are different from
the interpolation methods. The results indicate padding
zeros significantly deteriorates the recognition accuracy and
the accuracy difference is up to 10 percent at x ¼ 1.

From the results shown in Fig. 7, we can observe that the
overall recognition accuracy of Dynamic-SRC increases
with the growth of x (the number of steps needed for each
recognition). In this paper, we choose a moderate setting as
x ¼ 5, and the corresponding recognition accuracy can be
over 98 percent. However, it is apparent that the authentica-
tion system can be more reliable (higher accuracy) when the
user would like to pay more efforts on the walking action.
Therefore, the number of steps can be a user or application
defined parameter.

5.5 Evaluations of Fast Dynamic-SRC

As the discussion suggests in [38], ‘1-Homotopy takes
almost 2=3 of the total computation time therefore is compu-
tationally expensive for smartphones. The problem becomes
more fierce when it comes to the implementation on smart
glasses. Table 2 presents the comparison of Google Glass
Explorer Edition V2 and one of the off-the-shelf smart-
phones: LG Nexus 5 (also released in 2013). According to its
specifications, Google Glass is significantly more resource
constrained compared with smartphones. Therefore, it is
challenging to implement the SRC based approaches on
Google Glass. According to the discussion in Section 5.5, we
apply optimized projections and columns reduction to
improve the efficiency of Dynamic-SRC (i.e., fast Dynamic-
SRC) while preserving comparable accuracy. The resource
consumption of Dynamic-SRC and its fast version will be
evaluated in Section 6. We will only present the perfor-
mance of accuracy of fast Dynamic-SRC.

5.5.1 Impact of Number of Projections

We first apply the optimized projections to reduce the
dimensionality of Dynamic-SRC. Dynamic-SRC with ran-
dom projections are also included as benchmark. The accu-
racy of random projections is computed from averaging the
results from 30 independent trials. Fig. 8 presents the recog-
nition accuracy on different numbers of projections (i.e., the

Fig. 7. Accuracy comparison of different gait recognition methods in
indoor experiment.

TABLE 2
Comparison of Spefications of Nexus 5 and Google Glass V2

Google Glass V2 Nexus 5

CPU Dual-core 1 GHz Quad-core 2.3 GHz
RAM 2 GB 2 GB
Memory 16 GB 16 GB
Battery 570 mAh 2,300 mAh
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number of rows in the projection matrix). The number of
steps for each recognition is fixed at 5. From the results we
can find that Dynamic-SRC with optimized projections is up
to 10 percent more accurate than that with random projec-
tions at x ¼ 4. Moreover, the accuracy of Dynamic-SRC with
optimized projections becomes level when the number of
projections is over 50. Therefore, we choose the number of
projections as 50 for fast Dynamic-SRC.

5.5.2 Columns Reduction

To determine the minimum number of remaining columns
required for each class in the dictionary after columns reduc-
tion, we evaluate the recognition accuracy of Dynamic-SRC
with different number of remaining columns. We also evalu-
ate the performance of Dynamic-SRC with the columns
obtained from uniform subsampling. The step cycles
extracted from awalking session are sorted in time sequence.
Uniform subsampling evenly picks up the required number
of step cycles to form the dictionary. Fig. 9 presents the recog-
nition accuracy of Dynamic-SRC with different number of
remaining columns after columns reduction. As the results
suggest, the proposed columns reduction approach produ-
ces better recognition accuracy than uniform sampling and
the performance gain diminishes when the number of
remaining columns are over 20. Therefore, only the 20 most
informative step cycles are chosen from columns reduction
to form the dictionary for fast Dynamic-SRC.

We call the efficient implementation of Dynamic-SRC
after optimized projections and columns reduction as fast
Dynamic-SRC. The values of the parameters are determined
according to the evaluations in this section, i.e., 5 step cycles

for each recognition, 50 optimized projections and 20
remaining columns for each subject in the dictionary. As the
evaluation suggests in Section 6, fast Dynamic-SRC is over
25 times faster than the original Dynamic-SRC implementa-
tion on Google Glass and it only takes less than 900 ms after
the required number of steps (i.e., 5 as our setting) are taken
according to our evaluation on the computational efficiency
in Section 6.

5.6 Uncontrolled Outdoor Experiment

To provide more convincing evaluation results, we conduct
the outdoor uncontrolled experiments which are believed to
simulate a significantly more general application case. The
same group of people as in the indoor experiments are
recruited for the outdoor experiment and the experiment
also consists of two sessions. During the first session, the
participants were asked to take arbitrary paths they like
within the outdoor area shown in Fig. 6b. The terrain of the
chosen outdoor environment varies including plain, gentle
slopes and stairs. The participants were asked to walk freely
for 5-10 minutes to collect the IMU sensors’ data which
accounts for 400-800 step cycles. The second session of
experiments is conducted after one month. The participants
are asked to repeat the experiment and they took signifi-
cantly different paths compared with the previous session.
The significant time gap between the two experiment ses-
sions guarantees sufficient variances. We use the step cycles
collected from the first session as training set and those
from the second session as test set, therefore, the original
training set and test set have 20 classes and each set (train-
ing or test) has over 12,000 step cycles.

We compare the recognition accuracy of different recog-
nition methods with the parameters determined by the eval-
uation results on indoor experiments dataset. From the
results shown in Fig. 10 we can find Dynamic-SRC still
achieves the highest recognition accuracy among the meth-
ods implemented and the recognition accuracy is over 95
percent when the number of steps x ¼ 5. Comparing with
the results from indoor experiments, all gait recognition
methods implemented experience performance drop as
more dynamics are included in the outdoor experiment.
While TDE-TM experiences the most significant accuracy
drop: its accuracy drops from the third to the sixth place,
which indicates TDE-TM is most vulnerable in the uncon-
trolled environment.

Fig. 8. The recognition accuracy on different number of projections.

Fig. 9. The recognition accuracy on different number of columns in each
class.

Fig. 10. Accuracy comparison of different gait recognition methods in
outdoor experiment.
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5.7 Evaluations on Mimicking Attacks

In this section we evaluate the performance of GaitLock on
authentication attacks.

We evaluate two types of attacks in this section: zero-effort
attacks and mimicking attacks. It is possible an attacker is
familiar with the user or obtains a video in which the user is
walking; therefore, he can try to mimic the gait of the owner.
In the experiments of mimicking attacks, the 20 recruited
subjects are divided into 2 groups: 5 participants are
grouped as the users; 15 participants are grouped as attack-
ers. Each of the users wears the Google Glass alternatively
and rest of the subjects (including other users) try to mimic
the owner’s gait. Both of the time-series signals of the users
and attackers are recorded for further analyses. To demon-
strate the impact of gait mimicking, we also include the
zero-effort attacks where the attackers try to get authenticated
by taking free walks.

By analyzing the recorded time-series signals in the mim-
icking attacks experiments, the evaluation results of Gait-
Lock against mimicking attacks are presented in Fig. 11
(key region is magnified). The x axis stands for FAR while
the y axis stands for FRR. We vary FRR and FAR by chang-
ing the threshold for the classification confidence. Higher
threshold makes the system more secure (i.e., lower FAR),
however, this also brings higher FRR which indicates more
steps may be required for succesful authentication due to
the failed attemps. We also compute the EER of GaitLock
and show the results in the figure. The red straight line con-
sists of all the possible points where FAR is equal to FRR.
The crossovers of the red straight line and FRR-FAR curve
stands for the location of the EER which is as low as 0.029

for mimicking attacks and 0.021 for zero-effort attacks. The
results indicates that mimicking user’s gait patterns indeed
increases the possibility that the attackers get authenticated.
The comparable rate of increase is as high as 38 percent.
However, the overall EER rate is still quite low (i.e., 0.029)
as the benchmark is only 0.021. Moreover, In the real appli-
cation, the user may change the threshold of classification
confidence to satisfy their own needs. For example, a larger
threshold makes the system more secure against the attacks
while the real users may pay more efforts because it will
increase the probability that the real users are detected as
the attackers. For example, in our system, we choose
the threshold for the confidence level as 0.37 which makes
FAR = FRR = 0.029 under mimicking attacks.

6 SYSTEM IMPLEMENTATION AND RESOURCES

CONSUMPTION

In this section, we implement GaitLock in-situ on Google
Glass as an authentication system and evaluate its resources
consumption. The settings of GaitLock is determined by the
evaluation in Section 5.5. Google Glass is popularly used in
system research community and they are extremely
resource-constrained due to their lightweight and small-
size design even compared with other VR/AR devices.
Therefore, Google Glass is an ideal choice for benchmarking
the in-situ implementation of GaitLock on VR/AR headsets.

Computational Efficiency.Wefirst evaluate the improvement
of efficiency with columns reduction and optimized projec-
tions. The efficiency is represented by the computation time
which is obtained from the console of Android studio. Fig. 12
demonstrates the computation time of ‘1-Homotopy and
residual calculations with/without columns reduction (RC)
or/and optimized projections (OP). The original Dynamic-
SRC uses a full dictionary whose number of rows are 250 and
number of columns for each class is 60. Fast Dynamic-SRC
uses 50 optimized projections and 20 columns for each class.
From the results we can find Dynamic-SRC takes up to
25 seconds for each ‘1-Homotopy optimization and residual
calculation. However, fast Dynamic-SRC (with both opti-
mized projections and columns reduction) only takes less
than 900mswhich is over 25 faster than the original approach.

Multi-threads Implementation. To reduce the expected
Response Time (RT), we implement GaitLock in multiple
threads. RT is defined as the waiting time for the final classi-
fication decision after the required number of step cycles are
detected. As demonstrated in Fig. 13, six threads are

Fig. 11. Verification accuracy in mimicking attack.

Fig. 12. Comparison of computation time.

Fig. 13. Demonstration of multi-threads classication.
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allocated for GaitLock according to the system setting.
One of the threads is responsible for the step detection.
The rest of the threads are idle before step cycles are
received. For each time a new step is detected, the corre-
sponding sensor data of the step cycle is passed to acti-
vate a new thread. Threads 2 to 6 interpolate the step
cycles into the same length and then compute the sparse
coefficients vectors for each step cycle. All of the sparse
coefficients vectors are passed to Thread 6. Thread 6
undertakes sparse fusion on all the spare coefficients vec-
tors. After all the sparse coefficients vectors are obtained
by dynamic sparse representation, the classification deci-
sion is determined by computing DTW residuals on the
fused results. Therefore, according to the demonstrated
results in Fig. 13, the whole authentication process takes
about 4 seconds while the actual RT is about 900 ms (see
Table 3) by implementing GaitLock in multi-threads (e.g.,
6 threads are used for 5-steps authentication setting). As
it takes about 2 to 5 seconds for the next 5 steps, the sys-
tem produces realtime response on Google Glass and will
not bring accumulative delay.

Profiling Resources Consumption. We then profile the
resources consumption of each component of GaitLock.
Table 3 presents the detailed results. The computation time
and energy consumption are computed by averaging the
results from 50 authentication attempts. The energy con-
sumption is profiled by E ¼ PT , where P is the average
power and T is the runtime of the profiled component. The
average power P = Current� Voltage, where the Current
and Voltage of the battery is obtained via Android APIs.

From the energy consumption evaluation results shown
in Table 3, we can find that each authentication takes about
1.1 J which seems non-negligible if running continuously on
VR/AR headsets. However, GaitLock is required only
when the VR/AR headsets are turned on or a put-it-on
activity is detected because once a successful authentication
happens, the user remains authenticated until a take-it-off
activity is detected. Meanwhile GaitLock is switched to idle
to wait for next triggering activity.

The VR/AR headsets are assumed to be on the same sub-
ject’s nose before a take-it-off activity is detected. The
wearer is regarded as the same user continuously before the
take-it-off action is detected once he/she has been success-
fully authenticated.

The battery capacity of Google Glass Explorer Edition V2
is 2.1 KJ and according to the reviews on Engadget,2 the bat-
tery life of Google Glass only last for 3-5 hours of continu-
ous use. The energy drains even significantly more quickly

when recording videos and taking photos. We assume the
life span of the Google Glass is 5 hours. Therefore each
authentication of GaitLock only accounts for 0.2 percent of
the hourly budget (420 J). Considering authentication is not
frequent in common usage, GaitLock only has minimal
impact on the battery life of the VR/AR headsets.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel authentication and person-
alization support system, GaitLock, specially designed for
VR/AR headsets based on the gait recognition. To address
the problem of low recognition accuracy caused by inexpen-
sive but noisy sensor inputs caused by head motions, we
design a new gait recognition model, fast Dynamic-SRC. As
our evaluation shows, GaitLock is up to 20 percent more
accurate than other state of the art implementations onmulti-
ple datasets and robust against mimicking attacks. At last,
the real world implementation demonstrates that GaitLock
can be run in-situ on VR/AR headsets and it has minimal
impact on system cost.

However, the current prototype of GaitLock only takes
the walking activities into consideration and excludes simi-
lar repetitive activities. For example running activities will
be ruled out by the constraint on the length of the step
cycles in step detection. In the future, we will work on a
more comprehensive activities analysis system which
detects and distinguishes multimodal activities of the wear-
ers automatically to broaden the usage of the system.
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